Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Neurosci Res ; 100(9): 1732-1746, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35553084

RESUMO

An important role of pH homeostasis has been suggested in the physiology of panic disorder, with acidosis as an interoceptive trigger leading to fear and panic. Identification of novel mechanisms that can translate acidosis into fear will promote a better understanding of panic physiology. The current study explores a role of the subfornical organ (SFO), a blood-brain barrier compromised brain area, in translating acidosis to fear-relevant behaviors. We performed SFO-targeted acidification in male, wild-type mice and mice lacking microglial acid-sensing G protein-coupled receptor-T-cell death-associated gene 8 (TDAG8). Localized SFO acidification evoked significant freezing and reduced exploration that was dependent on the presence of acid-sensor TDAG8. Acidosis promoted the activation of SFO microglia and neurons that were absent in TDAG8-deficient mice. The assessment of regional neuronal activation in wild-type and TDAG8-deficient mice following SFO acidification revealed significant acidosis and genotype-dependent alterations in the hypothalamus, amygdala, prefrontal cortex, and periaqueductal gray nuclei. Furthermore, mapping of interregional co-activation patterns revealed that SFO acidosis promoted positive hypothalamic-cortex associations and desynchronized SFO-cortex and amygdala-cortex associations, suggesting an interplay of homeostatic and fear regulatory areas. Importantly, these alterations were not evident in TDAG8-deficient mice. Overall, our data support a regulatory role of subfornical organ microglial acid sensing in acidosis-evoked fear, highlighting a centralized role of blood-brain barrier compromised nodes in interoceptive sensing and behavioral regulation. Identification of pathways by which humoral information can modulate fear behavior is relevant to panic disorder, where aberrant interoceptive signaling has been reported.


Assuntos
Acidose , Órgão Subfornical , Acidose/metabolismo , Animais , Medo , Masculino , Camundongos , Microglia/metabolismo , Prosencéfalo , Órgão Subfornical/metabolismo
2.
Brain Behav Immun ; 101: 304-317, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35032573

RESUMO

Impaired threat responding and fear regulation is a hallmark of psychiatric conditions such as post-traumatic stress disorder (PTSD) and Panic Disorder (PD). Most studies have focused on external psychogenic threats to study fear, however, accumulating evidence suggests a primary role of homeostatic perturbations and interoception in regulating emotional behaviors. Heightened reactivity to interoceptive threat carbon dioxide (CO2) inhalation associates with increased risk for developing PD and PTSD, however, contributory mechanisms and molecular targets are not well understood. Previous studies from our group suggested a potential role of interleukin 1 receptor (IL-1R1) signaling within BBB-devoid sensory circumventricular organ, the subfornical organ (SFO) in CO2-evoked fear. However, the necessity of SFO-IL-1R1 in regulating CO2-associated spontaneous fear as well as, long-term fear potentiation relevant to PD/PTSD has not been investigated. The current study tested male mice with SFO-targeted microinfusion of the IL-1R1 antagonist (IL-1RA) or vehicle in a recently developed CO2-startle-fear conditioning-extinction paradigm. Consistent with our hypothesis, SFO IL-1RA treatment elicited significant attenuation of freezing and increased rearing during CO2 inhalation suggesting SFO-IL1R1 regulation of spontaneous fear to CO2. Intriguingly, SFO IL-1RA treatment normalized CO2-associated potentiation of conditioned fear and impaired extinction a week later suggesting modulation of long-term fear by SFO-IL-1R1 signaling. Post behavior FosB mapping revealed recruitment of prefrontal cortex-amygdala-periaqueductal gray (PAG) areas in SFO-IL-1RA mediated effects. Additionally, we localized cellular IL-1R1 expression within the SFO to blood vessel endothelial cells and observed CO2-induced alterations in IL-1ß/IL-1R1 expression in peripheral mononuclear cells and SFO. Lastly, CO2-evoked microglial activation was attenuated in SFO-IL-1RA treated mice. These observations suggest a peripheral monocyte-endothelial-microglia interplay in SFO-IL-1R1 modulation of CO2-associated spontaneous fear and delayed fear memory. Collectively, our data highlight a novel, "bottom-up" neuroimmune mechanism that integrates interoceptive and exteroceptive threat processing of relevance to fear-related pathologies.


Assuntos
Receptores de Interleucina-1 , Órgão Subfornical , Animais , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia , Células Endoteliais/metabolismo , Medo/fisiologia , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Masculino , Camundongos , Receptores de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1 , Órgão Subfornical/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...